Language Modelling Makes Sense

Propagating Representations through WordNet for Full-Coverage Word Sense Disambiguation

Daniel Loureiro, Alípio Jorge

ACL – Florence, 31 July 2019

Sense Embeddings

Exploiting the latest Neural Language Models (NLMs) for sense-level representation learning.

Sense Embeddings

Exploiting the latest Neural Language Models (NLMs) for sense-level representation learning.

- Beat SOTA for English Word Sense Disambiguation (WSD).
- Full WordNet in NLM-space (+100K common sense concepts).
- Concept-level analysis of NLMs.

Related Work

Introduction

Related Work

Our Approach

Performance

Applications

Related Work

Introduction

Related Work

Our Approach

Performance

Applications

Related Work

Our Approach

Performance

Bag-of-Features Classifiers

It Makes Sense (IMS) [Zhong and Ng (2010)]:

- POS tags, surrounding words, local collocations.
- SVM for each word type in training.
- Fallback: Most Frequent Sense (MFS).

"glasses"

- Improved with word embedding features. [lacobacci et al. (2016)]
- Still competitive (!)

Deep Sequence Classifiers

Bi-directional LSTMs (BiLSTMs):

- Better with:
 - Attention (as everything else).
 - Auxiliary losses. (POS, lemmas, lexnames) [Raganato et al. (2017)]
 - Glosses, via co-attention mechanisms. [Luo et al. (2018)]
- Still must fallback on MFS.
- Not that much better than bag-of-features...

	adv.	verb.		noun.			
LEX,		LEX ₃	LEX4	LEX ₅			
PRON POS₁ ♠	ADV POS₂ ♠	VERB POS ₃ ▲	DET POS₄ ▲	NOUN POS₅ ♠			
he ^y ₁ ▲	later ¹ _{Y₂}	check ¹ y ₃ v	the y ₄	report ³ _{Y₅}			
Softr	Softmax WSD + Softmax POS + Softmax LEX						
	Fully-connected Layer						
Attention Layer							
LSTM Layers							
Embedding Layer							
×1	×2	x ₃	×4	×5			
he	later	checked	l the	report			

[Raganato et al. (2017)]

Our Approach

Performance

Applications

Contextual k-NN

Matching Contextual Word Embeddings:

- Produce Sense Embeddings from NLMs (averaging).
- Sense embs. can be compared with contextual embs.
- Disambiguation = Nearest Neighbour search (1-NN).
- Sense embs. limited to annotations. MFS required.
- Promising, but early attempts.

[Ruder (2018)]

Our Approach

Performance

Applications

Introduction

Performance

Applications

• Expand the k-NN approach to full-coverage of WordNet.

Performance

Applications

- Expand the k-NN approach to full-coverage of WordNet.
- Matching senses becomes trivial, no MFS fallbacks needed.

- Expand the k-NN approach to full-coverage of WordNet.
- Matching senses becomes trivial, no MFS fallbacks needed.
- Full-set of sense embeddings in NLM-space is useful beyond WSD.

- Expand the k-NN approach to full-coverage of WordNet.
- Matching senses becomes trivial, no MFS fallbacks needed.
- Full-set of sense embeddings in NLM-space is useful beyond WSD.

Our Approach

Performance

Applications

- Expand the k-NN approach to full-coverage of WordNet.
- Matching senses becomes trivial, no MFS fallbacks needed.
- Full-set of sense embeddings in NLM-space is useful beyond WSD.

Our Approach

Performance

Applications

Introduction

Performance

Applications

• Overcome very limited sense annotations (covers 16% senses).

Performance

Applications

- Overcome very limited sense annotations (covers 16% senses).
- Infer missing senses correctly so that task performance improves.

Challenges

- Overcome very limited sense annotations (covers 16% senses).
- Infer missing senses correctly so that task performance improves.
- Rely only on sense embeddings, no lemma or POS features.

Challenges

- Overcome very limited sense annotations (covers 16% senses).
- Infer missing senses correctly so that task performance improves.
- Rely only on sense embeddings, no lemma or POS features.

Our Approach

Performance

Applications

Can your insurance company aid you in reducing administrative costs?

Would it be feasible to limit the menu in order to reduce feeding costs?

Would it be <u>feasible</u> to <u>limit</u> the <u>menu</u> in order to <u>reduce feeding costs</u>? feasible%5:00:00:possible:00 limit%2:30:00:: reduce%2:30:00:: cost%1:21:00::

Introduction

Related Work

Our Approach

Performance

Applications

Introduction

Related Work

Our Approach

Performance

Applications

$$\vec{v}_{reduce\%2:30:00::} = \frac{\vec{c_1} reduce\%2:30:00:: + \vec{c_2} reduce\%2:30:00:: + ... + \vec{c_n} reduce\%2:30:00::}{n}$$

$$\vec{v}_{cost\%1:21:00::} = \frac{\vec{c_1} cost\%1:21:00:: + \vec{c_2} cost\%1:21:00:: + ... + \vec{c_n} cost\%1:21:00::}{n}$$

Introduction

Related Work

Our Approach

Performance

Applications

Outcome: 33,360 sense embeddings (16% coverage)

Introduction

Related Work

Our Approach

Performance

Applications

WordNet's units, synsets, represent concepts at different levels.

WordNet's units, synsets, represent concepts at different levels.

Lexname

WordNet's units, synsets, represent concepts at different levels.

noun.person

burger%1:13:00::

hotdog%1:18:00::

hamburger%1:13:01::

sandwich%1:13:00::

wrap%1:13:00::

potato_chip%1:13:00::

Introduction

Related Work

Our Approach

Performance

Applications

burger%1:13:00::

hotdog%1:18:00::

hamburger%1:13:01::

sandwich%1:13:00::

wrap%1:13:00::

potato_chip%1:13:00::

Introduction

Related Work

Our Approach

Performance

Applications

Retrieve Synsets, Relations and Categories

1st stage: Synset Embeddings

noun.food

Related Work

Introduction

Performance

Applications

Conclusions

Our Approach

2nd Stage: Hypernym Embeddings (ind. Synsets)

3rd Stage: Lexname Embeddings

Leverage Synset Definitions and Lemmas for Differentiation

Leverage Synset Definitions and Lemmas for Differentiation

sandwich:%1:13:00:: (sandwich.n.01) Definition: two (or more) slices of bread with a filling between them Lemmas: sandwich

Compose a new context

sandwich:%1:13:00:: (sandwich.n.01)
sandwich - two (or more) slices of bread with a filling between them

Introduction

Make the context specific to sensekey (repeat lemma)

sandwich:%1:13:00::

sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap - wrap, tortilla - a sandwich in which the filling is rolled up in a soft tortilla

Make the context specific to sensekey (repeat lemma)

sandwich:%1:13:00::

—— sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap - wrap, tortilla - a sandwich in which the filling is rolled up in a soft tortilla

Obtain contextual embeddings for every token

sandwich:%1:13:00::

sandwich - sandwich - two (or more) slices of bread with a filling between them

 $\vec{c} = \vec{c} = \vec{c} = \vec{c}$... Wrap $\sim 1.15.00$.. wrap – wrap, tortilla - a sandwich in which the filling is rolled up in a soft tortilla

Ć

r

Sentence Embedding from avg. of Contextual Embeddings

Applications

Merge Sentence Embedding with previous Sense Embedding

Performance

Merge Sentence Embedding with previous Sense Embedding

Contextual Embeddings aren't good at preserving morphological relatedness

Retrieve char-ngram embeddings (static) for lemmas

Merge with previous sense embeddings

sandwich:%1:13:00::

Merge with previous sense embeddings

sandwich:%1:13:00::

The <u>glasses</u> are in the cupboard.

Introduction

Related Work

Our Approach

Performance

Applications

The glasses are in the cupboard.

Introduction

Related Work

Our Approach

Performance

Applications

The glasses are in the cupboard.

Introduction

Related Work

Our Approach

Performance

Applications

The <u>glasses</u> are in the cupboard.

WSD Results

Introduction

Related Work

Our Approach

Performance

Applications

WSD Results

Standard English WSD Evaluation F1 on ALL set of the WSD Evaluation Framework (Raganato et al. 2017)

Uninformed Sense Matching (matching +200K) Same standard but without filtering candidates by lemmas or POS

Applying Sense Embeddings

Introduction

Related Work

Our Approach

Performance

Applications

World Knowledge in NLMs

What's BERT thinking about when he reads?

Introduction

Related Work

Our Approach

Performance

Applications

World Knowledge in NLMs

[E1] played [E2] in [E3]

Marlon*	Brando*	played	Corleone*	in	Godfather*
$person_n^1$	$person_n^1$	act_v^3	$syndicate_n^1$	$movie_n^1$	$location_n^1$
$womanizer_n^1$	$group_n^1$	$make_v^{42}$	$mafia_n^1$	$telefilm_n^1$	$here_n^1$
$bustle_n^1$	$location_n^1$	$emote_v^1$	$person_n^1$	$final_cut_n^1$	$there_n^1$

 $\operatorname{act}_{v}^{3}$: play a role or part; $\operatorname{make}_{v}^{42}$: represent fictiously, as in a play, or pretend to be or act like; $\operatorname{emote}_{v}^{1}$: give expression or emotion to, in a stage or movie role.

Serena*	Williams	played	Kerber*	in	Wimbledon*
$person_n^1$	$professional_tennis_n^1$	$play_v^1$	$person_n^1$	win_v^1	$tournament_n^1$
$therefore_r^1$	$tennis_n^1$	$line_up_v^6$	$group_n^1$	$romp_v^3$	$world_cup_n^1$
$reef_n^1$	$singles_n^1$	$curl_v^5$	$take_orders_v^2$	$carry_v^{38}$	$elimination_tournament_n^1$

 $play_v^1$: participate in games or sport; $line_up_v^6$: take one's position before a kick-off; $curl_v^5$: play the Scottish game of curling.

David	Bowie *	played	Warszawa*	in	Tokyo	
$person_n^1$	$person_n^1$	$play_v^{14}$	$poland_n^1$	$originate_in_n^1$	$tokyo_n^1$	
$amati_n^2$	$folk_song_n^1$	$play_v^6$	$location_n^1$	in_r^1	$japan_n^1$	
$guarnerius_n^3$	$fado_n^1$	$riff_v^2$	$here_n^1$	$take_the_field_v^2$	$japanese_a^1$	
$play_v^{14}$: perform on a certain location; $play_v^6$: replay (as a melody); $riff_v^2$: play riffs.						

Introduction

Related Work

Our Approach

Performance

Applications

Checking for Biases in NLMs

Putting BERT on the spot

Introduction

Related Work

Our Approach

Performance

Applications

Checking for Biases in NLMs

$$bias(s) = sim(\vec{v}_{man_n^1}, \vec{v}_s) - sim(\vec{v}_{woman_n^1}, \vec{v}_s)$$

Introduction

- Powerful NLMs allow for a simple k-NN to perform really well for WSD.
- NLMs are improving very rapidly, progress in WSD should follow.
- Sense embeddings from NLMs are useful not only for WSD, but also for NLM inspection, and other probing or downstream tasks.

Future Work

- Pipeline Improvements: Better NLMs, sentence embeddings, char embeddings, use of WN, etc..
- Multilingual Sense Embeddings.
- Semi-supervised Refinement.
- Formalize inspection (probing task), other applications.

Thanks

Code and Sense Embeddings: github.com/danlou/LMMS

dloureiro@fc.up.pt

Related Work

Our Approach

Performance

Applications