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Sense Embeddings

Exploiting the latest Neural Language Models (NLMs) for sense-level 

representation learning.

• Beat SOTA for Word Sense Disambiguation (WSD).

• Full WordNet in NLM-space (+100K common sense concepts).

• Concept-level analysis of NLMs.
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Bag-of-Features Classifiers

It Makes Sense (IMS) [Zhong and Ng (2010)] :

• POS tags, surrounding words, local collocations.

• SVM for each word type in training.

• Fallback: Most Frequent Sense (MFS).

• Improved with word embedding features. [Iacobacci et al. (2016)]

• Still competitive (!)
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“glasses”



Bi-directional LSTMs (BiLSTMs):

• Better with:

• Attention (as everything else).

• Auxiliary losses. (POS, lemmas, lexnames) [Raganato et al. (2017)]

• Glosses, via co-attention mechanisms. [Luo et al. (2018)]

• Still must fallback on MFS.

• Not that much better than bag-of-features…

Deep Sequence Classifiers

[Raganato et al. (2017)]
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Contextual k-NN

Introduction Related Work Our Approach Performance Applications Conclusions

Matching Contextual Word Embeddings:

• Produce Sense Embeddings from NLMs (averaging).

• Sense embs. can be compared with contextual embs.

• Disambiguation = Nearest Neighbour search (1-NN).

• Sense embs. limited to annotations. MFS required.

• Promising, but early attempts.

[Ruder (2018)]



Our Approach
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Our Approach

• Expand the k-NN approach to full-coverage of WordNet.

• Matching senses becomes trivial, no MFS fallbacks needed.

• Full-set of sense embeddings in NLM-space is useful beyond WSD.
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Challenges

• Overcome very limited sense annotations (covers 16% senses).

• Infer missing senses correctly so that task performance improves.

• Rely only on sense embeddings, no lemma or POS features.
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Challenges

• Overcome very limited sense annotations (covers 16% senses).

• Infer missing senses correctly so that task performance improves.

• Rely only on sense embeddings, no lemma or POS features.

ReinforceEnrichPropagateBootstrap

Annotated Dataset WordNet Ontology WordNet Glosses Morphological Embeddings
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Bootstrapping Sense Embeddings

Can  your  insurance company  aid  you  in  reducing  administrative  costs ?

Would  it  be  feasible  to  limit  the  menu  in  order  to  reduce  feeding  costs ?
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Bootstrapping Sense Embeddings

Can  your  insurance company aid you  in  reducing administrative costs ?

insurance_company%1:14:00::

aid%2:41:00::

reduce%2:30:00::

administrative%3:01:00::

cost%1:21:00::

Would  it  be  feasible to  limit the  menu in  order  to  reduce feeding costs ?

cost%1:21:00::

feasible%5:00:00:possible:00

limit%2:30:00::

menu%1:10:00::

reduce%2:30:00::

feeding%1:04:01::
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Bootstrapping Sense Embeddings
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Bootstrapping Sense Embeddings

reduce%2:30:00:: cost%1:21:00::

cost%1:21:00::reduce%2:30:00::

𝑐1 𝑐1

𝑐2 𝑐2

Introduction Related Work Our Approach Performance Applications Conclusions



Bootstrapping Sense Embeddings

𝑣 reduce%2:30:00::
reduce%2:30:00::𝑐1 reduce%2:30:00::𝑐2+

n

reduce%2:30:00::𝑐n+ +…
=

𝑣 cost%1:21:00::
cost%1:21:00::𝑐1 cost%1:21:00::𝑐2+

n

cost%1:21:00::𝑐n+ +…
=
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Outcome: 33,360 sense embeddings (16% coverage)



Propagating Sense Embeddings

WordNet’s units, synsets, represent concepts at different levels.
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Propagating Sense Embeddings

WordNet’s units, synsets, represent concepts at different levels.
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kid%1:18:00:: Sensekey

child.n.01 Synset

juvenile.n.01

Synset

noun.person

Sensekey Sensekey



Propagating Sense Embeddings
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hamburger%1:13:01::

burger%1:13:00::

hotdog%1:18:00::

potato_chip%1:13:00::

wrap%1:13:00::

sandwich%1:13:00::
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Propagating Sense Embeddings
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hamburger%1:13:01::burger%1:13:00::

burger.n.02 hotdog.n.01

sandwich.n.01

chips.n.04

noun.food

hotdog%1:18::00

potato_chip%1:13::00

wrap.n.02

wrap%1:13::00sandwich%1:13:00::

Retrieve Synsets, Relations and Categories



Propagating Sense Embeddings
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hamburger%1:13:01::burger%1:13:00::

burger.n.02 hotdog.n.01

sandwich.n.01

chips.n.04

noun.food

hotdog%1:18::00

potato_chip%1:13::00

wrap.n.02

wrap%1:13::00sandwich%1:13:00::

1st stage: Synset Embeddings



Propagating Sense Embeddings
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hamburger%1:13:01::burger%1:13:00::

burger.n.02 hotdog.n.01

sandwich.n.01

chips.n.04

noun.food

hotdog%1:18::00

potato_chip%1:13::00

wrap.n.02

wrap%1:13::00sandwich%1:13:00::

2nd Stage: Hypernym Embeddings (ind. Synsets)



Propagating Sense Embeddings
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hamburger%1:13:01::burger%1:13:00::

burger.n.02 hotdog.n.01

sandwich.n.01

chips.n.04

noun.food

hotdog%1:18::00

potato_chip%1:13::00

wrap.n.02

wrap%1:13::00sandwich%1:13:00::

3rd Stage: Lexname Embeddings



Propagating Sense Embeddings
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hamburger%1:13:01::burger%1:13:00::

burger.n.02 hotdog.n.01

sandwich.n.01

chips.n.04

noun.food

hotdog%1:18::00

potato_chip%1:13::00

wrap.n.02

wrap%1:13::00sandwich%1:13:00::

But XX != __ …
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Leverage Synset Definitions and Lemmas for Differentiation

sandwich:%1:13:00:: (sandwich.n.01)
Definition: two (or more) slices of bread with a filling between them
Lemmas: sandwich

wrap:%1:13:00:: (wrap.n.02)
Definition: a sandwich in which the filling is rolled up in a soft tortilla
Lemmas: wrap, tortilla



Enriching Sense Embeddings
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Compose a new context

sandwich:%1:13:00:: (sandwich.n.01)
sandwich - two (or more) slices of bread with a filling between them

wrap:%1:13:00:: (wrap.n.02)
wrap, tortilla - a sandwich in which the filling is rolled up in a soft tortilla



Enriching Sense Embeddings
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Make the context specific to sensekey (repeat lemma)

sandwich:%1:13:00::
sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap%1:13:00::
wrap - wrap, tortilla - a sandwich in which the filling is rolled up in a soft tortilla
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Enriching Sense Embeddings
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Obtain contextual embeddings for every token

sandwich:%1:13:00::
sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap%1:13:00::
wrap – wrap, tortilla - a sandwich in which the filling is rolled up in a soft tortilla

𝑐 𝑐 𝑐 𝑐

𝑐 𝑐

…

𝑐 𝑐 …



Enriching Sense Embeddings
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Sentence Embedding from avg. of Contextual Embeddings

sandwich:%1:13:00::
sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap%1:13:00::
wrap - wrap - a sandwich in which the filling is rolled up in a soft tortilla

𝑣𝑑 =

𝑣𝑑 =

𝑑 = 1024



Enriching Sense Embeddings
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Merge Sentence Embedding with previous Sense Embedding

sandwich:%1:13:00::
sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap%1:13:00::
wrap - wrap - a sandwich in which the filling is rolled up in a soft tortilla

𝑣𝑑 =

𝑣𝑑 =

sandwich:%1:13:00::
𝑣𝑠 =

wrap:%1:13:00::
𝑣𝑠 =



sandwich:%1:13:00::
sandwich - sandwich - two (or more) slices of bread with a filling between them

wrap%1:13:00::
wrap - wrap - a sandwich in which the filling is rolled up in a soft tortilla

Merge Sentence Embedding with previous Sense Embedding

Enriching Sense Embeddings
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𝑣𝑠 =

𝑣𝑠 =

𝑑 = 2048



Reinforcing Sense Embeddings
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Contextual Embeddings aren’t good at preserving morphological relatedness



Reinforcing Sense Embeddings
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Retrieve char-ngram embeddings (static) for lemmas

sandwich:%1:13:00::

wrap%1:13:00::

𝑣𝑙 =

𝑣𝑙 =



Reinforcing Sense Embeddings
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Merge with previous sense embeddings

sandwich:%1:13:00::

wrap%1:13:00::

𝑣𝑙 =

𝑣𝑙 =

𝑣𝑠 =

𝑣𝑠 =



Reinforcing Sense Embeddings
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Merge with previous sense embeddings

sandwich:%1:13:00::

wrap%1:13:00::

𝑣𝑠 =

𝑣𝑠 =

𝑑 = 2348



Matching Sense Embeddings
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The glasses are in the cupboard.

Ԧ𝑐

Ԧ𝑣

Ԧ𝑐 Ԧ𝑐 Ԧ𝑣𝑣𝑡 =



Matching Sense Embeddings
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The glasses are in the cupboard.

Ԧ𝑐

Ԧ𝑣

Ԧ𝑐 Ԧ𝑐 Ԧ𝑣𝑣𝑡 =

𝑣𝑑 𝑣𝑙𝑣𝑠
𝑣𝑑 𝑣𝑙𝑣𝑠

𝑣𝑑 𝑣𝑙𝑣𝑠
spectacles%1:06:00::

glass%1:27:00::drinking_glass%1:06:00::



WSD Results
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MFS IMS
(Zhong and
Ng, 2010)

IMS + Emb.
(Iacobacci et

al. 2016)

BiLSTM
(Raganato et

al. 2017)

BiLSTM VR
(Vial et al.

2018)

context2vec
(Melamud et

al. 2016)

ELMo k-NN
(Peters et al.

2018)

BERT k-NN
(Adapted

Peters et al.)

LMMS-BERT
(Ours)

Standard English WSD Evaluation
F1 on ALL set of the WSD Evaluation Framework (Raganato et al. 2017)



WSD Results
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Uninformed Sense Matching (matching +200K)
Same standard but without filtering candidates by lemmas or POS

0

10

20

30

40

50

60

70

80

LMMS 1024 LMMS 2048 LMMS 2348



Applying Sense Embeddings
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World Knowledge in NLMs

What’s BERT thinking about when he reads?

Introduction Related Work Our Approach Performance Applications Conclusions



World Knowledge in NLMs
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[E1] played [E2] in [E3]



Checking for Biases in NLMs

Putting BERT on the spot
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Checking for Biases in NLMs
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𝑏𝑖𝑎𝑠 𝑠 = 𝑠𝑖𝑚 Ԧ𝑣𝑚𝑎𝑛𝑛
1 , Ԧ𝑣𝑠 − 𝑠𝑖𝑚( Ԧ𝑣𝑤𝑜𝑚𝑎𝑛𝑛

1 , Ԧ𝑣𝑠)



Conclusion

• Powerful NLMs allow for a simple k-NN to perform really well for 
WSD.

• NLMs are improving very rapidly, progress in WSD should follow.

• Sense embeddings from NLMs are useful not only for WSD, but also 
for NLM inspection, and other probing or downstream tasks.
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Future Work

• Pipeline Improvements: Better NLMs, sentence embeddings, char 
embeddings, use of WN, etc..

• Multilingual Sense Embeddings.

• Semi-supervised Refinement.

• Formalize inspection (probing task), other applications.
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Thanks
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Code and Sense Embeddings:
github.com/danlou/LMMS

@danielbloureirodloureiro@fc.up.pt


