Affordance Extraction and Inference based on Semantic Role Labeling

Daniel Loureiro, Alípio Jorge

University of Porto

Fact Extraction and Verification (FEVER) Workshop EMNLP 2018

Overview

Method

- 1. Affordances What are they and why are they relevant?
- 2. FEVER → How may this relate to FEVER? (Suggestions)
- 3. Affordance Extraction
- 4. Affordance Inference
- 5. Evaluation
- 6. Conclusions

Gibson 1979

Norman 1988

Glenberg 2000

Depends on who you ask.

Gibson 1979

Norman 1988

Glenberg 2000

Psychology

Affordance: What the environment provides the animal.

Gibson 1979

Norman 1988

Glenberg 2000

Design

Affordance: Perceived action possibilities (suggestive).

Gibson 1979

Norman 1988

Glenberg 2000

Language

Affordance: Basis for grounding meaning under the Indexical Hypothesis.

Why affordance?

- Commonsense acquisition and representation in Distributional Semantic Models is still an open question [Camacho-Collados, Pilhevar 2018].
- Affordances are a **relational** component of Commonsense Knowledge.

Why affordance?

- Commonsense acquisition and representation in Distributional Semantic Models is still an open question [Camacho-Collados, Pilhevar 2018].
- Affordances are a **relational** component of Commonsense Knowledge.

Languag	e Models	Commonsense Knowledge			World Knowledge		
Patterns		Motivations		Medicine			
Syntax	Associations	Objects		Living	Chemistry	Ge	ography
Jyntax	Associations	Substances		Things	Events		
Vocal	oulary	Aff	ordan	ces	Names Culture		ulture

Why affordance?

- Commonsense acquisition and representation in Distributional Semantic Models is still an open question [Camacho-Collados, Pilhevar 2018].
- Affordances are a **relational** component of Commonsense Knowledge.

Fact Extraction

ugh Whitemore about Turing. The play ran in London's West End beginning in November 1986 and on Broadway from 15 ese performances Turing was played by Derek Jacobi. The Broadway production was nominated for three Tony Awards atured Actor in a Play, and Best Direction of a Play, and for two Drama Desk Awards, for Best Actor and Best Featured acobi in the 1996 television film adaptation of *Breaking the Code*.^[231]

nnial, American Lyric Theater commissioned an operatic exploration of the life and death of Turing from composer Justine ^{232]} Titled *The Life and Death(s) of Alan Turing*, the opera is a historical fantasia on the life of Turing. In November 2014, ks inspired by Turing's life were featured on Studio 360.^[233] The opera received its first public performance in January

uring police have jurisdiction over Als. (1984)^[235]

on novel *Cryptonomicon* (1999).^[236]

g Test features Turing and the writer Graham Greene.^[237]

2. FEVER

Turing Machines contrasts fictionalised accounts of the lives and ideas of Turing and Kurt Gödel.^[238]

sa Hall, includes a series of fictional letters written from Turing to his best friend's mother throughout his life, detailing his [240]

ch a fictionalised version of WWII plays out involving superhuman soldiers called "Tank-Men", Turing is one of the researchers as well as a Tank-Man

https://en.wikipedia.org/wiki/Alan_Turing

1. Affordances

Fact Extraction

Benedict Cumberbatch portrayed Turing in The Imitation Game.

With good statistics on affordances, you can infer additional extractions:

- Those who portray usually personify.
 - Benedict Cumberbatch personified Turing.
- Things portrayed are usually film characters.
 - Turing is a film character. (not exclusive)
- Places where portrayal occurs are usually films.
 - The Imitation Game is a film.

Fact Extraction

Benedict Cumberbatch portrayed Turing in The Imitation Game.

With good statistics on affordances, you can infer additional extractions:

- Those who portray usually personify.
 - Benedict Cumberbatch personified Turing.
- Things portrayed are usually film characters.
 - Turing is a film character. (not exclusive)
- Places where portrayal occurs are usually films.
 - The Imitation Game is a film.

cf. Selectional Preferences, Argument Typicality, Frame Semantics.

Example claims from the FEVER dataset:

- A Floppy disk is <u>lined with turnips</u>.
 A Floppy disk is <u>lined with paper</u>.
- A Floppy disk is <u>sealed in</u> a cave.
- A Floppy disk is a <u>type of fish</u>.
 A Floppy disk is <u>sealed in plastic</u>.

Example claims from the FEVER dataset:

- A Floppy disk is <u>lined with turnips</u>.
 A Floppy disk is <u>lined with paper</u>.
- A Floppy disk is <u>sealed in</u> a cave.

A Floppy disk is a <u>type of fish</u>.
 A Floppy disk is <u>sealed in plastic</u>.

Semantic Plausibility as a **prior bias** for Fact Verification.

- If **implausible** (i.e. nonsense):
 - Probably refutable and no explicit evidence. E.g. "A Floppy disk is a type of fish."
- If **plausible** and **typical** (i.e. obvious):
 - Probably supported with implicit evidence. E.g. "Dan Trachtenberg is a person."
- If **plausible** and **atypical** (i.e. others):
 - Unknown refutability, explicit evidence should exist.
 E.g. "Sarah Hyland is a New Yorker."

Semantic Plausibility as a **prior bias** for Fact Verification.

 If implausible (i.e. nonsense): Probably refutable and no explicit evidence. E.g. "A Floppy disk is a type of fish." 	Obvious
 If plausible and typical (i.e. obvious): Probably supported with implicit evidence. E.g. "Dan Trachtenberg is a person." 	Requires Evidence
 If plausible and atypical (i.e. others): Unknown refutability, explicit evidence should exist. E.g. "Sarah Hyland is a New Yorker." 	
Intuition: Plausibility should be easier to assess than Truth.	Nonsense

Affordance Representation:

Every symbol (i.e. token) is represented by a vector whose dimensions signal affordances.

	Can eat ?	Can jump ?	Used for riding ?	Place for getting lost?
dog	Yes	Yes	No	No
cat	Yes	Yes	No	No
horse	Yes	Yes	Yes	No
brussels	No	No	No	Yes
thought	No	No	No	No

Assignment

Affordance Representation:

Every symbol (i.e. token) is represented by a vector whose dimensions signal affordances.

	Can eat ?	Can jump ?	Used for riding ?	Place for getting lost?
dog	1.0	1.0	0.2	0.0
cat	1.0	1.0	0.0	0.0
horse	1.0	0.8	1.0	0.0
brussels	0.2	0.0	0.0	1.0
thought	0.0	0.2	0.0	0.2

Assignment > Grading

Affordance Representation:

Every symbol (i.e. token) is represented by a vector whose dimensions signal affordances.

	eat AGENT	jump AGENT	ride PATIENT	lose LOCATION
dog	1.0	1.0	0.2	0.0
cat	1.0	1.0	0.0	0.0
horse	1.0	0.8	1.0	0.0
brussels	0.2	0.0	0.0	1.0
thought	0.0	0.2	0.0	0.2

Assignment > Grading > Formalizing

- Affordances are based on Predicate-Argument Structures (PASs) extracted from Natural Language using Semantic Role Labeling (SRL).
 We use [He et. al 2017]'s end-to-end neural SRL to process Wikipedia.
- After extraction, PASs are organised into a co-occurrence matrix and weighted using PPMI, similarly to [Levy and Goldberg 2014].

- Affordances are based on Predicate-Argument Structures (PASs) extracted from Natural Language using Semantic Role Labeling (SRL).
 We use [He et. al 2017]'s end-to-end neural SRL to process Wikipedia.
- After extraction, PASs are organised into a co-occurrence matrix and weighted using PPMI, similarly to [Levy and Goldberg 2014].

PropBank annotations [Palmer 2012]

- Affordances are based on Predicate-Argument Structures (PASs) extracted from Natural Language using Semantic Role Labeling (SRL).
 We use [He et. al 2017]'s end-to-end neural SRL to process Wikipedia.
- After extraction, PASs are organised into a co-occurrence matrix and weighted using PPMI, similarly to [Levy and Goldberg 2014].

	drink ARG0	drink ARG1	drink ARGM-MNR	•••
John	0.8	0.0	0.0	0.0
red	0.0	0.6	0.0	0.0
wine	0.0	0.9	0.0	0.0
slowly	0.0	0.0	0.7	0.0
•••	0.0	0.0	0.0	0.0

- Affordances are based on Predicate-Argument Structures (PASs) extracted from Natural Language using Semantic Role Labeling (SRL).
 We use [He et. al 2017]'s end-to-end neural SRL to process Wikipedia.
- After extraction, PASs are organised into a co-occurrence matrix and weighted using PPMI, similarly to [Levy and Goldberg 2014].

	drink ARG0	drink ARG1	drink ARGM-MNR	•••
John	0.8			
red		0.6		
wine		0.9		
slowly			0.7	
••••				

- Affordances are based on Predicate-Argument Structures (PASs) extracted from Natural Language using Semantic Role Labeling (SRL).
 We use [He et. al 2017]'s end-to-end neural SRL to process Wikipedia.
- After extraction, PASs are organised into a co-occurrence matrix and weighted using PPMI, similarly to [Levy and Goldberg 2014].

	drink ARG0	drink ARG1	drink ARGM-MNR	•••
John	0.8	- C		
red		o Sparse	• • •	
wir (#	role conte	exts << # a	dj context	ts)
slowly			0.7	

 To address sparsity we perform linear combination with adjacency-based representations obtained from the same corpus. Inspired by work in translation [Zhao et al. 2015].

$$\vec{v}_w = \frac{\vec{v}_1 * \alpha_1 + \dots + \vec{v}_n * \alpha_n}{\sum_{i=1}^n \alpha_i}$$

$$\alpha_i = \begin{cases} \frac{A_{\vec{v}_w} \cdot A_{\vec{v}_i}}{\|A_{\vec{v}_w}\| \|A_{\vec{v}_i}\|} = \cos_A(\vec{v}_w, \vec{v}_i), \\ & \text{if } \cos_A(\vec{v}_w, \vec{v}_i) > 0.5 \\ 0, & \text{otherwise} \end{cases}$$

 To address sparsity we perform linear interpolation with adjacency-based representations obtained from the same corpus. Inspired by work in translation [Zhao et al. 2015].

 To address sparsity we perform linear interpolation with adjacency-based representations obtained from the same corpus. Inspired by work in translation [Zhao et al. 2015].

 To address sparsity we perform linear interpolation with adjacency-based representations obtained from the same corpus. Inspired by work in translation [Zhao et al. 2015].

• This redefines existing vectors as well as creates new ones.

Affordance Inference

Indexical Hypothesis' Meshing

i.e. Role Complementarity

Affordance Inference

Algorithm 1 Affordance Meshing Algorithm

- 1: **procedure** INFERENCE $(M^+, w_1, w_2, a_1, a_2)$
- 2: $relations \leftarrow []$
- 3: $\vec{v}_1, \vec{v}_2 \leftarrow get_vec(w_1, M^+), get_vec(w_2, M^+)$
- 4: for $f_1 \in features(\vec{v}_1) \land arg(f_1) = a_1$ do
- 5: **for** $f_2 \in features(\vec{v}_2) \land arg(f_2) = a_2$ **do**
- 6: **if** $pred(f_1) = pred(f_2)$ **then**
- 7: $relations.add((f_1 * f_2, pred(f_1)))$
- 8: **return** *sorted*(*relations*)

Simple algorithm using interpolated PAS-based vectors.

Word Pairs	Affordances
$(\mathbf{w}_1,\mathbf{w}_2)$	(w ₁ as ARG0, w ₂ as ARG1)
shop, tea	sell, import, cure
doctor, patient	diagnose, prescribe, treat
newspaper, face	cover, expose, poke
man, cup	drink, pour, spill

Word Representations that are relational and interpretable

Affordance Inference

Algorithm 1 Affordance Meshing Algorithm

- 1: **procedure** INFERENCE $(M^+, w_1, w_2, a_1, a_2)$
- 2: $relations \leftarrow []$
- 3: $\vec{v}_1, \vec{v}_2 \leftarrow get_vec(w_1, M^+), get_vec(w_2, M^+)$
- 4: for $f_1 \in features(\vec{v}_1) \land arg(f_1) = a_1$ do
- 5: for $f_2 \in features(\vec{v}_2) \wedge arg(f_2) = a_2$ do
- 6: **if** $pred(f_1) = pred(f_2)$ **then**
- 7: $relations.add((f_1 * f_2, pred(f_1)))$
- 8: **return** *sorted*(*relations*)

Word Pairs	Affordances
$(\mathbf{w}_1,\mathbf{w}_2)$	(w ₁ as ARG0, w ₂ as ARG1)
shop, tea	sell, import, cure
doctor, patient	diagnose, prescribe, treat
newspaper, face	cover, expose, poke
man, cup	drink, pour, spill

Simple algorithm using interpolated PAS-based vectors.

Word Representations that are relational and interpretable

But are these *accurate* word representations?

Evaluation

Word Similarity Tasks are the standard for evaluating word representations.

Context	Model	SL-666	SL-999	WS-SIM	WS-ALL	MEN	RG-65
	word2vec	.426	.414	.762	.672	.721	.793
Lexical	GloVe	.333	.325	.637	.535	.636	.601
	fastText (A)	.426	.419	.779	.702	.751	.799
	★ Deps	.475	.446	.758	.629	.606	.765
Syntactic	Open IE	.397	.390	.746	.696	.281	.801
Syntactic	A2Avecs (M^+)	.461	.412	.734	.577	.687	.802
	A2Avecs (SVD (M^+))	.436	.386	.672	.509	.599	.789

All trained on Wikipedia

- Ours (A2Avecs) performs competitively with adjacency-based lexical contexts, but the dependency-based embeddings of Levy and Goldberg 2014 still perform better.
- Curiously, applying SVD to reduce our explicit 18k dimensions into the standard 300 latent dimensions hurts performance significantly.

Evaluation

 However, what if we try concatenating our PAS-based vectors with latent embeddings trained on larger corpora (fastText 600B)?

Context	Model	SL-666	SL-999	WS-SIM	WS-ALL	MEN	RG-65
Lexical SOTA	fastText 600B (A)	.523	.504	.839	.791	.836	.859
Intp. w/SOTA	A2Avecs (M^+)	.513	.468	.780	.619	.744	.814
Intp. & Conc.	\bigstar A2Avecs ($M^+ \parallel A$)	.540 ↑	.521 †	.846 🕇	.771 🖡	.829 🖡	.857 ++
Deps Conc.	Deps A	.524 🔸	.503 ↔	.818 🖡	.752 🖡	.770 🖡	.835 🖡

- Interestingly, this solution is markedly better, significantly outperforming the SOTA on challenging tasks such as SimLex-999 (specially nouns).
- To be rigorous, we concatenated the same latent embeddings to the dependency-based embeddings, and found that this combination wasn't beneficial.

Conclusions

- SRL can be useful for deriving word representations with information that is **complementary to adjacency-based contexts** (and dependency-based).
- Within the same vector space, you can perform **relational inferences** while still using cosine similarity for semantics.
- This representation of affordances may be a useful way to integrate Commonsense knowledge into applications such as Fact Verification, particularly by enabling **semantic plausibility assessments**.

Conclusions

- SRL can be useful for deriving word representations with information that is **complementary to adjacency-based contexts** (and dependency-based).
- Within the same vector space, you can perform **relational inferences** while still using cosine similarity for semantics.
- This representation of affordances may be a useful way to integrate Commonsense knowledge into applications such as Fact Verification, particularly by enabling semantic plausibility assessments.
- In future work, we'll evaluate on more tasks and propose better ways to exploit PAS-based relational knowledge. (on-going)

Questions?

Demo and more at: <u>a2avecs.github.io</u>

Thank You!

dloureiro@fc.up.pt ♥danielbloureiro