Affordance Extraction and Inference using SRL

Demo: a2avecs.github.io Daniel Loureiro, Alípio Jorge - University of Porto - LIAAD, INESCTEC

dloureiro@fc.up.pt

J. PORTC

Ours (A2Avecs) performs competitively with adjacency-

embeddings of Levy and Goldberg 2014 still perform

Curiously, applying SVD to reduce our explicit 18k dimensions into the

based lexical contexts, but the dependency-based

standard 300 latent dimensions hurts performance significantly.

- Discover how different concepts may interact, according to their respective roles (as agent, patient, location, manner, etc.).
- Works for associated or related concepts such as doctor/patient as well as unrelated concepts such as newspaper/face.

Introspection	
---------------	--

Conclusions

- SRL-based contexts complementary to adjacency contexts for
- word representations (word2vec, GloVe, fastText, etc.).
- Provided a solution for performing **Relational Inferences** in Distributional Semantic Models.
- Provided the components for assessing Semantic Plausibility, which should be useful for Fact Verification.

Evaluation on Word Similarity Tasks Word Similarity Tasks are the standard for evaluating word representations.

Context	Model	SL-666	SL-999	WS-SIM	WS-ALL	MEN	RG-65
Lexical	word2vec	.426	.414	.762	.672	.721	.793
	GloVe	.333	.325	.637	.535	.636	.601
	fastText (A)	.426	.419	.779	.702	.751	.799
Syntactic	🛨 Deps	.475	.446	.758	.629	.606	.765
	Open IE	.397	.390	.746	.696	.281	.801
	A2Avecs (M^+)	.461	.412	.734	.577	.687	.802
	A2Avecs (SVD (M^+))	.436	.386	.672	.509	.599	.789

All trained on English Wikipedia.

What if we try concatenating our PAS-based vectors with latent embeddings trained on larger corpora (fastText 600B)?

better.

Interestingly, this solution is markedly better, significantly **RG-65** Context Model SL-666 SL-999 WS-SIM WS-ALL MEN outperforming fastText 600B on challenging tasks such as Lexical SOTA fastText 600B (A) .523 .504 .839 .791 .836 .859 Intp. w/SOTA .513 .468 .780 .744 .814 A2Avecs (M^+) .619 SimLex-999 (specially nouns). .540 .521 .846 .829 .857 -Intp. & Conc. A2Avecs $(M^+ \parallel A)$.771 Deps Conc. Deps $\parallel A$.524 🔸 .503 • .818 🕹 .752 🖡 .770 🖡 .835 🕹 To be rigorous, we concatenated the same latent embeddings to the dependency-based embeddings, and found that this combination wasn't Best result uses PASs extracted from Wikipedia, interpolated (M+) using beneficial.

fastText 600B, and also concatenated (||) with fastText 600B.

Arthur M. Glenberg. 2000. Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning. José Camacho-Collados and Mohammad Taher Pilehvar. 2018. From word to sense embeddings: A survey on vector representations of meaning. Luheng He, Kenton Lee, Mike Lewis, and Luke S. Zettlemoyer. 2017. Deep semantic role labeling: What works and what's next Omer Levy and Yoav Goldberg. 2014. Dependency-based word embeddings